Reliability in a sea of Risk

Welcome to Day 2 The VMEA Framework in Practice

RiaSoR Reliability in a sea of risk

Day 2: 08:00-12:30

- 08:00 Arrival
- 08:30 Review of day 1
- 08:45 Case study: Moorings and foundations
- 09:30 Coffee break
- 10:00 Case study: Structural component11:00 Case study: Electrical component12:00 Summary of Key learning points

Reliability in a sea of risk

Day 1 Review

Reliability in a sea of Risk

Case Study: Moorings and foundations Andy Shanks, Project Manager EMEC

- EMEC within RiaSoR
- Foundations
- Moorings
- Design process
- Uncertainty in the design process
- The Safety Factor Issue
- VMEA approach
- EMEC Case study

EMEC within RiaSoR

EMEC focussed on the connection of a device to the seabed – **why?**

- A common feature to every developer on every site
- Often not core to a developers business
- A significant part of the cost of a project
- An area that non-developers can help in progressing and refining

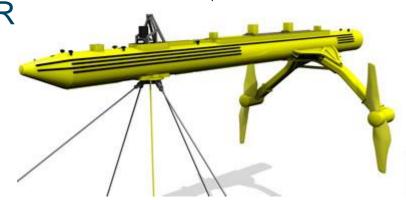
Foundations for Marine Energy Converters

Monopile

Piled Tripod

A range of styles and approaches previously used at EMEC

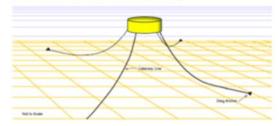
Gravity Tripod

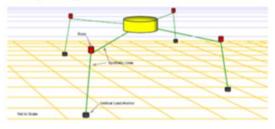


A Focus on moorings

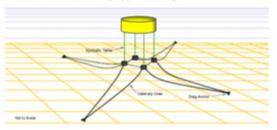
There is a general move within the testing underway at EMEC, away from devices fixed to solid foundations, and towards floating devices with moorings.

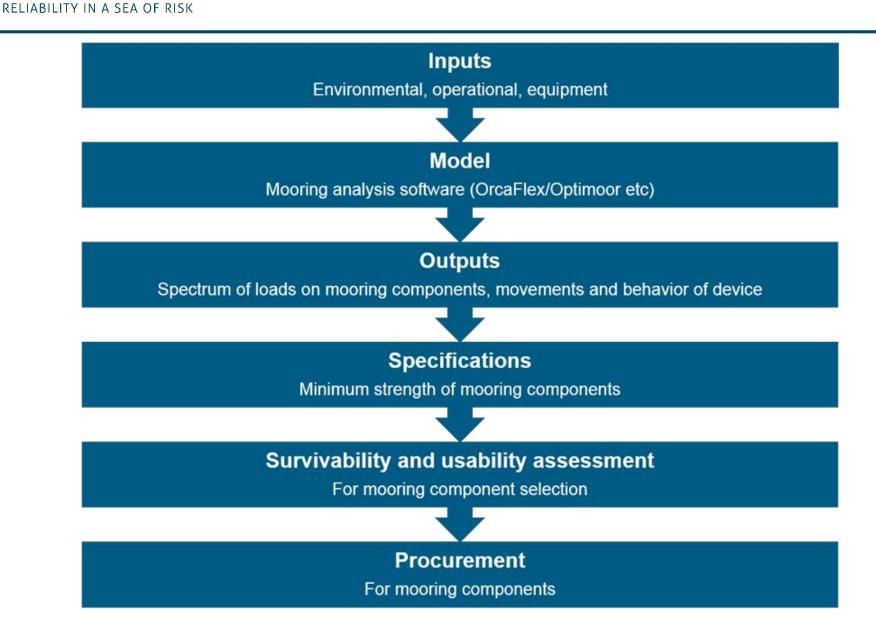
EMEC case study within RiaSoR focuses on moorings




Types of moorings

- Many different styles and compositions, suited to different application and seabed types
- EMEC have seen both various systems used
- Catalogue of mooring types created as part of RiaSOR


1. Conventional Chain Catenary Mooring


6. Buoy Mooring with Vertical Load Anchors

8. Multi-Tether "Admiralty Type" Mooring

Mooring design process

RiaSoR

bibilalalah

Mooring design uncertainty

Uncertainties at each step of the design process

complex and aggressive environments; difficult to measure, and then model accurately

Very variable conditions within deployment sites introduces risk of under or over estimation of forces

New techniques and materials being used, so no data available on rates of wear

RiaSoR Reliability in a sea of Risk

The "Safety Factor Issue"

- A high level of uncertainty, leads to high safety factors and over-specified designs
- EMEC intend to develop the understanding of the uncertainties by relating it them to their contribution to the overall safety factor
- Scope for reducing uncertainties and costs through testing and measuring programmes – guided by VMEA analysis

VMEA - a range of solutions

VMEA (Variation Mode and Effect Analysis)

Product Development

Concept Phase

Design Phase

Enhanced VMEA More information is available

Better information on the sources of variation.

Example: Compare different designs using a Belt. Judge the sizes of the variation sources and their sensitivity to the failure of the Belt

		Variation size (1-10) o _i	Sensitivity (1-10) 9	Variation number 4, ² 0, ²
т	Temperature	8	2	256
Р	Tension	8	10	6400
Δ	Tolerance	3	1	9
w	Wear	6	8	2304
	Te	tal variation =	Σj αj ² α ² = 8969	

Result: Choose a design with low "Total variation"

Detailed Design Phase

Probabilistic VMEA More detailed information about the structure and the sources of variation

Assign statistical variances to the different sources.

Evaluate the physical property, e.g. time to failure.

Example: Evaluate the variation in life, N, of the most attractive design. $\ln(N) - f(r, P, \Delta, W) - f(x_1, x_2, x_3, x_4)$

 $c_i = \frac{\partial_i f}{\partial x_i}, \quad \tau_i^2 = Var(x_i)$

	∂x,	-1 (
		Variation size %	Sensitivity ^{Ci}	Variation C ₁ ² 4 ²		
т	Temperature	0.28	1.1	0.09		
Р	Tension	0.22	3.8	0.70		
Δ	Tolerance	0.08	0.5	0.002		
w	Wear	0.16	3.4	0.30		
	Var(in(N))= ∑ _i c _i ² x _i ² = 1.09					

Result: Uncertainty in predicted life of the Belt. To improve the reliability, it would be most efficient to Improve the Tension properties.

Basic VMEA

Only limited information is available

Select among design concepts.

Choose a design alternative which is robust to variation.

Example: Evaluate the AC power transmission supply alternatives: • Hydraulic • Electric • Belt

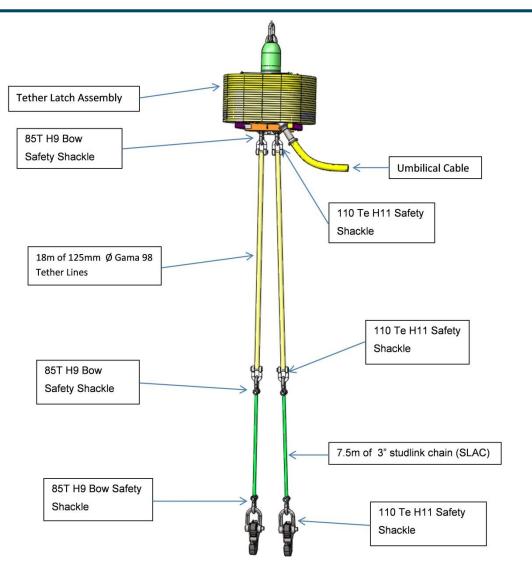
Use engineering judgment to evaluate the variation sizes by using a simple ranking system.

> **Conclusions:** Choose Belt alternative.


Pelamis Case Study

Pelamis P2001 device, in position at EMEC test site

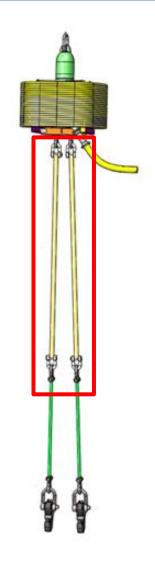
RiaSoR Reliability in a sea of risk


Pelamis moorings

The bulk of the Pelamis P2001 mooring system was comprised of an "Admiralty type mooring pattern", using drag/embedment anchors, ground chain, and (not shown) clump weights

RiaSoR Reliability in a sea of RISK

Pelamis moorings


The connection between the ground chain and the device was formed using several bespoke items including chain hooks, tethers, and a midwater buoy that combined mechanical with electrical connections, as well as some more standard components and shackles.

This case study focussed on investigating the more unique sections, as they were comparatively unproven in the sector, leading to greater uncertainty as to their wear rates, and life expectancy

RiaSoR Reliability in a sea of risk

Pelamis uncertainties

 The uncertainty within the wear rate of the tether is only one variable in a larger array of unknowns, which is the building blocks of the basic VMEA

Basic VMEA (1)

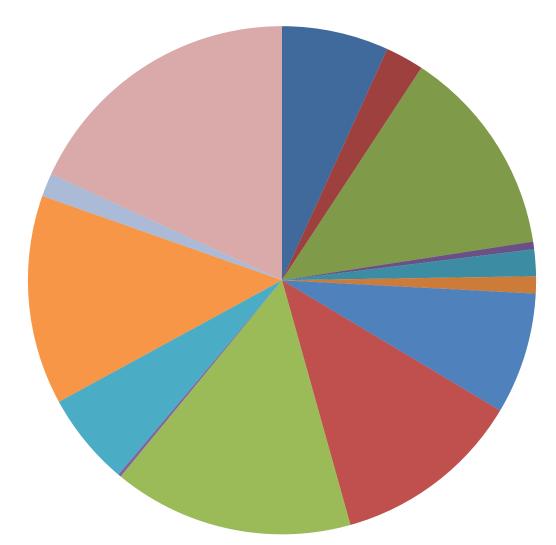
	Input			Results		
Modelling uncertainties	Sensitivity	Uncertainty	Uncertainty	VRPN	Proportion	
Model detail of device	5	6	30	900	7	
Model detail of mooring/foundation	3	6	18	324	2	
Accuracy of modelling environmental data - wave	7	6	42	1764	13	
Accuracy of modelling environmental data - wind	2	4	8	64	0	
Accuracy of modelling environmental data - tide	3	5	15	225	2	
Seabed conditions, and seabed stability	4	3	12	144	1	
Design uncertainties						
Interation between moorings/foundation and						
seabed	4	8	32	1024	8	
Ultimate loads seen by device (100 year storm)	5	8	40	1600	12	
Fatigue loads seen by device (20 year working						
life at rated power)	5	9	45	2025	15	
Measured metocean data not representative due						
to short sample period	1	5	5	25	0	
Measured metocean data not representative due						
to distance from final site	4	7	28	784	6	
In operation uncertainties						
Failure rate of surface connections and midwater						
shackles	6	7	42	1764	13	
Failure rate of long term mooring shackles on						
seabed	2	7	14	196	1	
Failure rate of bespoke tethers	7	7	49	2401	18	
			380	13240	100	

Example of Basic VMEA upon Pelamis moorings

Basic VMEA (2)

	Ir	nput			Results	
Modelling uncertainties	Sensitivity		Uncertainty	Uncertainty	VRPN	Proportion
Model detail of device		5	6	30	900	7
Model detail of mooring/foundation		3	6	18	324	2
Accuracy of modelling environmental data - way	9	7	6	42	1764	13
Accuracy of modelling envi		2	4	8	64	0
Accuracy of modelling envi Accuracy of modelling envi	•	3	5	15	225	2
Seabed conditions, and se safety factor t	hat each	4	3	12	144	1
Design uncertainties line item has.						
Interation between mooring						
seabed		4	8	32	1024	8
Ultimate loads seen by device (100 year storm)		5	8	40	1600	12
Fatigue loads seen by device (20 year workin	The uncortain	tvin				
	The uncertain				2025	15
Measured metocean data not representative c	neasurement	:/mo	delling o	f		
to short sample period	each line item				25	0
Measured metocean data not representative d		•				
to distance from final site		4	7	28	784	6
In operation uncertainties						
Failure rate of surface connections and midwate	r					
shackles		6	7	42	1764	13
Failure rate of long term mooring shackles on						
seabed		2	7	14	196	1
Failure rate of bespoke tethers		7	7	49	2401	18
				380	13240	100

Explanation of Basic VMEA inputs


Basic VMEA (3)

	Input			Results	
Modelling uncertainties	Sensitivity	Uncertainty	Uncertainty	VRPN	Proportion
Model detail of device	5	6	30	9)0	7
Model detail of mooring/foundation	3	0	18	3 <mark>2</mark> 4	2
Accuracy of modelling environmental data - wave	e 7	6	42	17 <mark>6</mark> 4	13
Accuracy of modelling environmental data - wind	2	4	8	64	0
Accuracy of modelling environmental data - tide	3	5	15	225 🔰	2
Seabed conditions, and seabed stability	The combination	ofthe		orcontag	a of the
Design uncertainties	The combination	of the		ercentag	
Interation between moorings/foundation and	input sensitivity a	and the	total	uncertair	nty that
seabed	input uncertainty	Givesa	each	line item	represents.
Ultimate loads seen by device (100 year storm)	• •		cuen		represents.
Fatigue loads seen by device (20 year working	weighted uncerta	linty,		J	
life at rated power)	showing how imp	ortant it			15
Measured metocean data not representative du	• •		Secoi	nd order	
to short sample period	is to the overall d	esign	weigl	hting	0
Measured metocean data not representative due					
to distance from final site	4	7	28	784	6
In operation uncertainties					
Failure rate of surface connections and midwate	r				
shackles	6	7	42	1764	13
Failure rate of long term mooring shackles on					
seabed	2	7	14	196	1
Failure rate of bespoke tethers	7	7	49	2401	18
			380	13240	100

Explanation of Basic VMEA outputs

Basic VMEA (4)

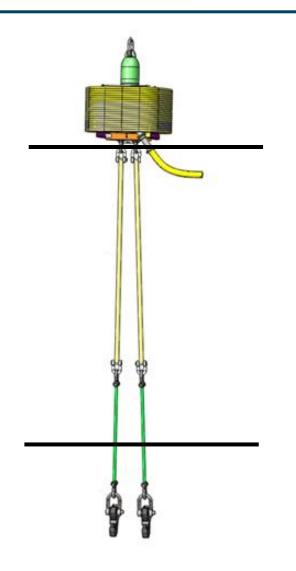

Proportion of Variation

Accuracy of modelling environmental data - wave

- Interation between moorings/foundation and seabed
- Ultimate loads seen by device (100 year storm)
- Fatigue loads seen by device (20 year working life at rated power)
- Failure rate of surface connections and midwater shackles
- Failure rate of bespoke tethers

Basic VMEA (5)

Accuracy of modelling environmental data - wave


- Interation between moorings/foundation and seabed
- Ultimate loads seen by device (100 year storm)
- Fatigue loads seen by device (20 year working life at rated power)
- Failure rate of surface connections and midwater shackles
- Failure rate of bespoke tethers

Basic VMEA (6)

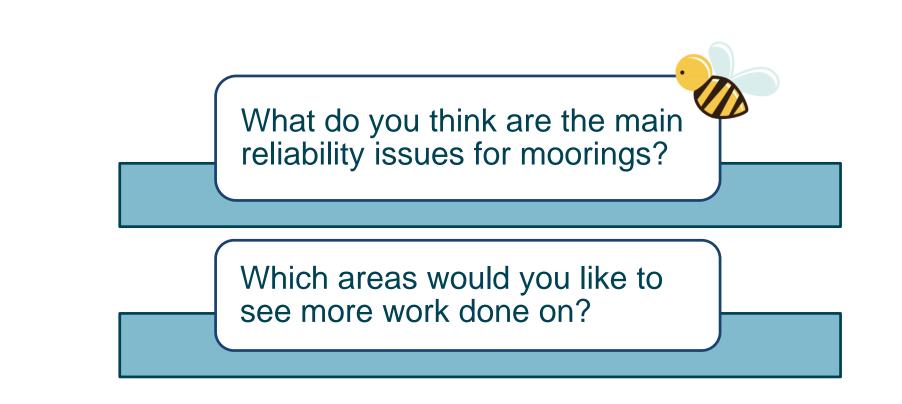
	Input			Results	
Modelling uncertainties	Sensitivity	Uncertainty	Uncertainty	VRPN	Proportion
Model detail of device	5	6	30	900	7
Model detail of mooring/foundation	3	6	18	324	2
Accuracy of modelling environmental data - wave	7	6	42	1764	13
Accuracy of modelling environmental data - wind	2	4	8	64	0
Accu Seab Desi focus on bespoke tethers, surfa					with a
Interation between moorings/roundation and					
seabed	4	8	32	1024	8
Ultimate loads seen by device (100 year storm)	5	8	40	1600	12
Fatigue loads seen by device (20 year working			45	0005	4.5
life at rated power)	5	9	45	2025	15
Measured metocean data not representative due to short sample period		5	5	25	0
Measured metocean data not representative due to distance from final site	4	7	28	784	6
In operation uncertainties	4		20	704	0
Failure rate of surface connections and midwater					
shackles	e	7	42	1764	13
Failure rate of long term mooring shackles on					
seabed	2	7	14	196	1
Failure rate of bespoke tethers	7	7	49	2401	18
			380	13240	100

Reducing uncertainty through break testing of decommissioned moorings

Case Study results

Tethers and shackles out for detailed investigation, leading to a final break test – results to follow!

Moving from basic VMEA towards probabilistic VMEA


Detailed dissection of a design process extracting actual safety factors

Not captured within RiaSoR, but included in the scope of work for RiaSoR 2

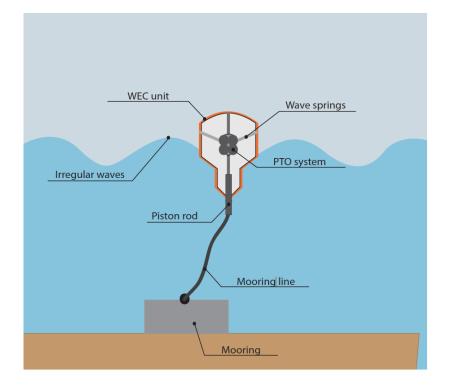
RiaSoR Reliability in a sea of risk

Beehive! Discuss...

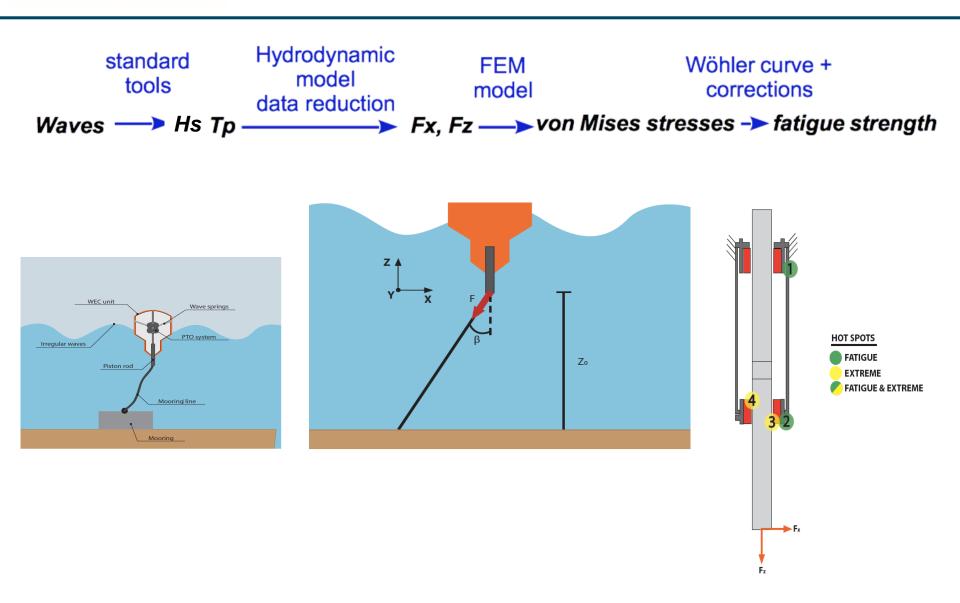
Reliability in a sea of risk

Coffee Break 09:30 – 10:00

Reliability in a sea of Risk


Case Study: Structural component Thomas Svensson, PhD SP Technical Research Institute of Sweden

Fatigue strength for a piston rod



We study the fatigue strength of a *piston rod* that is subjected to both tensile and bending induced stresses transforming buoy movements to the mooring line.

The main engineering tools in this application are

- 1. a hydrodynamic numerical tool,
- 2. a finite element numerical tool, and
- 3. a fatigue model.

Strength calculation, overview

RiaSoR

 RELIABILITY IN A SEA OF RISK

Uncertainty sources

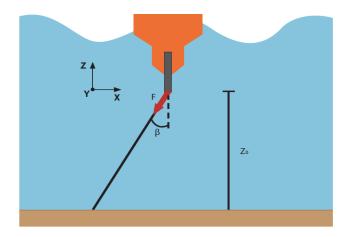
Waves \rightarrow	Hs/Tp
---------------------	-------

standard tools

Relevance of Hf, Tp. Measurement uncertainties Statistical uncertainty Possible sampling error Site variation

 $Hf/Tp \longrightarrow Fx,Fz$

hydrodynamic model

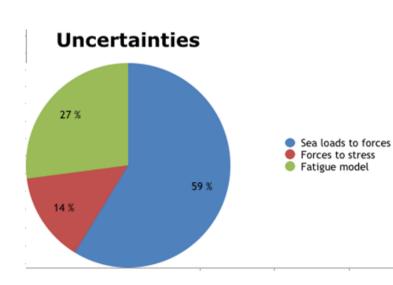

Possible model errors Initial conditions Marine growth Data reduction bias

Fx, Fz \rightarrow von Mises stresses

FEM model

Possible FEM-model errors

von Mises stresses → fatigue strength
Relevance of von Mises stress
Fatigue scatter
Statistical uncertainty
Wöhler curve relevance
Corrosion adjustment error
Peripheral distr. correction error
Palmgren-Miner rule for damage accumulation


RiaSoR Reliability in a sea of risk

An initial assessment, a basic VMEA

A meeting at the developers office worked out a basic VMEA.

The dominating uncertainties were identified:

- 1. Uncertainty in the design (connection solution)
- 2. Model error in hydrodynamic model
- 3. Variation between sites
- 4. Influence of threads (stress intensity factor)

Input	1	1	Result		
			Resulting	Varia	ation
	Sensitivity	Variation	variation	contri	bution
Uncertainty components	(1-10)	(1-10)	Variation	VRPN	Portion
Sea loads to forces					
- Estimation of sea states	5	3	15	225	2 %
- Variation within site	5	2	10	100	1 %
- Variation between sites	5	7	35	1225	12 %
- Neglected loads (wave direction, current,)	2	4	8	64	1 %
- Model error, calculation	5	8	40	1600	16 %
- Marine growth (increase loads?)	5	4	20	400	4 %
- Connection (flexible?)	7	7	49	2401	23 %
- System degeneration (may increase forces)	0	3	0	0	0 %
Total Sea loads to forces			78	6015	59 %
Forces to stress					
- FEM, stiffness	5	3	15	225	2 %
- FEM, simplified model	5	6	30	900	9 %
- FEM, mesh	5	2	10	100	1 %
- Position (low-mid-high)	5	3	15	225	2 %
- Model simplifications	0	5	0	0	0 %
Total Forces to stress			38	1450	14 %
Fatigue model					
- Fatigue strength, scatter	5	3	15	225	2 %
- Fatigue strength, uncertainty	5	6	30	900	9 %
- Wöhler slope	2	5	10	100	1 %
- multiaxial effects	2	5	10	100	1 %
- stress intensity factor	5	7	35	1225	12 %
- Equivalent load sequence	5	3	15	225	2 %
Total Fatigue model			53	2775	27 %
Total uncertainty			101	10240	100 %

Next step, extend to enhanced VMEA

The Basic VMEA only gives a qualitative picture but no information of safety limits.

The Basic VMEA indicates which are the dominating uncertainty sources. In order to find proper safety limits, these sources must be *physically quantified*, which is the aim with the *enhanced VMEA*.

We lack detailed knowledge about all components in the life assessments, but use a recent master thesis as a starting point.

In the thesis, the fatigue life of the piston rod has been studied.

The study is based on a **specific solution** for the connection to the mooring line and performed by using an in-house program for the hydrodynamics and a commercial Finite Element program for both stress analysis and fatigue calculations.

DEGREE PROJECT IN MECHANICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2016

Extreme loading and fatigue analysis of a wave energy converter

EGIL GUSTAFSSON

RiaSor RELIABILITY IN A SEA OF RISK

An enhanced VMEA

Input						Result				
	scatter	uncert.	Sensitivity coefficient	t-correction factor	standard deviation				e a targe	t function
Uncertainty components	ær,	Ę.	С	t	S	Scatter	Unce	2 List u	ncertaint	v
Strength										y
Scatter	X		1.000					compor	ients	
Fatigue strength specification		X	3.000							
Adjustment uncertainty CA/VA		x	1.000					3.Quan	tify their	
Mean value influence		x	1.000	1.0	0.100			uncerta	inty by m	heans of
Total Strength uncertainty						0.250				
								standar	d deviati	ons
Load										
Model error in hydrodynamic model.		х	3.000	1.0	0.087			4.Find t	their sens	Sitivity to
Variation within sites	х		3.000	1.0	0.012	0.036		the actu	ial target	function
Marine growth		х	3.000	1.0	0.029				aur turgo	
Variation between sites	х		3.000	1.0	0.120	0.360		5 Evalu	late a pro	nor
Simplification in the Finite Element Met	hod	х	3.000	1.0	0.029					hei
Total Load uncertainty						0.362		safety f	actor	
Total uncertainty						0.440		0.483	0.653	
Reliability Evaluation										
Input			Result				Res	ult (log-s	cale)	
Median life (days)		640	Safety factor		0,88		Life		6,46	
Target life (days)		730					Targe	et life	6,59	
							Dista		-0,13	
Evolution Extra adaly factor					0.00				4.07	
Evaluation - Extra safely factor		-	Variation safe		2,92		Variation dist. 1,07			
Required extra safety factor		2	Extra safety fa	ctor	0,30		Extra	dist.	-1,20	

The actual target function

The target for this equipment is that the life should exceed two years in service.

We then choose the target function

$$\ln(N_{nom}) - \ln(N_{target})$$

that for a reliable structure should fulfil

$$\ln(N_{nom}) - \ln(N_{target}) > \delta_S + \delta_E$$

The extra safety distance δ_E is chosen to be 0.7 in this case (*a factor* 2)

Reliability Evaluation

The statistical safety distance δ_s is found by studying all possible uncertainty sources in the life prediction.

Input	Result
Median life (days)	640 Safety factor 0,88
Target life (days)	730

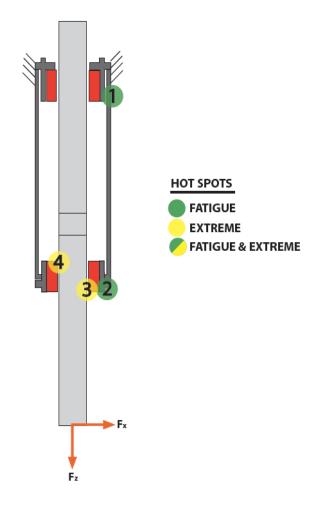
Evaluation - Extra safely factor	Variation safety factor	2,92
Required extra safety factor	2 Extra safety factor	0,30

Result (log-	scale)
Life	6,46
Target life	6,59
Distance	-0,13

Find a relevant Wöhler curve

Two hot spots are identified. At both these locations the component is threaded, which is **not modelled** in the FEM solution.

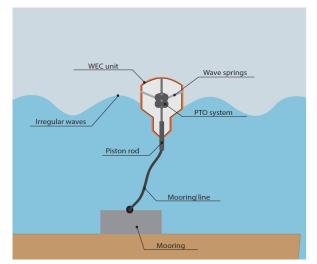
In order to adjust for that, we have found experimental results for threaded bolts subjected to combined bending and tensile stress. However, the material is different and therefore, the transformation from pure material to threads is quite uncertain.



Experimental characterization of the bending fatigue strength of threaded fasteners

Henrik Wentzel*, Xiyue Huang

Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden



RiaSoR Reliability in a sea of risk

Circumferential distribution

The immediate calculated damage is probably exaggerated because of an expected circumferential distribution of stress.

Namely, the buoy may be assumed to rotate randomly between the load cycles. This means that at a certain circumferential point the severity of a specific bending load cycle is only $\cos \alpha \cdot F_a$, i.e. the amplitude of the cycle is reduced by the angle to the specific wave direction.

Assuming now that the angle is random in time and uniformly distributed, then the expected severity of a specific load cycle is

$$\frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos \alpha \cdot F_a d\alpha = 0.64 F_a$$

Since this is true for each load cycle, it means that the whole spectrum of cycles should be reduced by the factor 0.64 and the life be elongated by approximately a factor 4.

RELIABILITY IN A SEA OF RISK

RiaSoR

Input						Result		
Uncertainty components	scatter	uncert.	Sensitivity coefficient c	t-correction factor t	deviation		Uncertainty	Total
Strength								
Scatter	X]	1.000	1.0	0.250	0.250		

From the illustration of the experimental result for threaded fasteners the standard deviation for the *scatter* can be estimated to 25% in life.

This is a rough estimate rounded upwards to account for uncertainty and the t-correction factor is then kept at unity.

The standard deviation is estimated in percentage life which has a one-to-one sensitivity to log life.

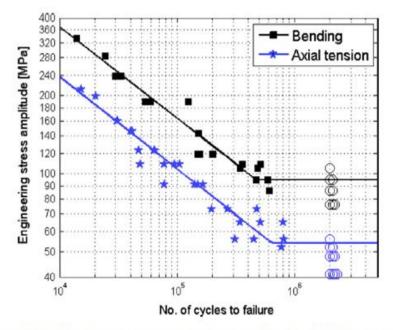


Fig. 10. Wöhler diagram showing the fatigue strength of M14/10.9 bolts, each marker corresponds to a tested specimen and run-outs are marked with circles.

RELIABILITY IN A SEA OF RISK

hahalalahaha

RiaSoR

Input F				Result				
Uncertainty components	scatter	uncert.	Sensitivity coefficient c	t-correction factor t	deviation		Uncertainty	Total
Strength								
Scatter	x		1.000	1.0	0.250	0.250		
Fatigue strength specification		х	3.000	1.0	0.120		0.360	

The nominal fatigue strength has here been estimated from another material than the actual and has been adjusted with respect to a few apparent differences. These adjustments are assumed to introduce at most 20% error in strength.

$$\frac{0.2}{\sqrt{3}} = 0.12$$

The strength is related to fatigue life through the Wöhler curve with slope 3, which gives the actual sensitivity coefficient.

$$N = \alpha \cdot \Delta \sigma^{-3}$$
$$\ln N = \ln \alpha - 3 \cdot \ln \Delta \sigma$$
$$\frac{\partial \ln N}{\partial \ln \Delta \sigma} = -3$$

RELIABILITY IN A SEA OF RISK

hilidalalah

RiaSoR

nput					Result			
Uncertainty components	scatter	uncert.	Sensitivity coefficient c	t-correction factor t	deviation		Uncertainty	Total
Strength								
Scatter	x		1.000	1.0	0.250	0.250		
Fatigue strength specification		х	3.000	1.0	0.120		0.360	
Adjustment uncertainty CA/VA		х	1.000	1.0	0.100		0.100	
Mean value influence		х	1.000	1.0	0.100		0.100	
Total Strength uncertainty						0.250	0.387	0.461

Possible model error introduced by using the Palmgren-Miner cumulative damage accumulation law is judged to be 17% in life

Possible model error due to mean value influence is also judged to be 17% in life

$$\frac{0.17}{\sqrt{3}} = 0.1$$

$$\frac{0.17}{\sqrt{3}} = 0.1$$

RELIABILITY IN A SEA OF RISK

hilidada

RiaSoR

Total Strength uncertainty						0.250	0.387	0.461
Load								
Model error in hydrodynamic model.		х	3.000	1.0	0.087		0.261	
Variation within sites	х		3.000	1.0	0.012	0.036		
Marine growth		х	3.000	1.0	0.029		0.087	
Variation between sites	х		3.000	1.0	0.120	0.360		
Simplification in the Finite Element Met	nod	х	3.000	1.0	0.029		0.087	
Total Load uncertainty						0.362	0.289	0.463

The hydrodynamic model is not calibrated and is assumed to contain errors up to 15% in output force.

$$\frac{0.15}{\sqrt{3}} = 0.087$$

Variation in wave forces between sites and within site are estimated from experience to 20% and 2%, respectively, possible influence from marine growth to at most 5% and errors due to simplifications in the Finite Element analysis to 5%.

All these estimates have been done with respect to force giving the senstivity coefficient 3 from the actual Wöhler curve.

$$\frac{0.20}{\sqrt{3}} = 0.12 \qquad \frac{0.02}{\sqrt{3}} = 0.012$$
$$\frac{0.05}{\sqrt{3}} = 0.029 \qquad \frac{0.05}{\sqrt{3}} = 0.029$$

$$N = \alpha \cdot \Delta \sigma^{-3}$$

RiaSor Reliability in a sea of RISK

Evaluate the reliability

Input			
Uncertainty components	scatter	uncert.	
Strength			Γ
Scatter	х		Γ
Fatigue strength specification		х	\Box
Adjustment uncertainty CA/VA		х	Γ
Mean value influence		Х	Γ
Total Strength uncertainty			\Box
			\Box
Load			
Model error in hydrodynamic model.		х	
Variation within sites	х		
Marine growth		х	
Variation between sites	х		Γ
Simplification in the Finite Element Met	hod	х	
Total Load uncertainty			Γ
			Γ
Total uncertainty			Γ

The estimated nominal life is 640 days	ln640 = 6.46
The target life is two years, 730 days	ln730 = 6.59
The <i>actual</i> safety factor is:	$\frac{640}{730} = 0.88$
The total uncertainty evaluation demands a statistical safety distance,	730 1.64 · 0.653 = 1.02
which corresponds to the statistical safety factor,	$e^{1.64 \cdot 0.653} = 2.92$
	ō

Reliability Evaluation

Result
640 Safety factor 0,8
730

Evaluation - Extra safely factor	Variation safety factor	2,92
Required extra safety factor	2 Extra safety factor	0,30

	The actual extra
Result (log-scale)	safety factor is
Life 6,46	
Target life 6,59	
Distance -0,13	
	0.88 _ 0.20
Variation dist. 1,07	$\frac{1}{2.92} = 0.30$
Extra dist1,20	2.92

Next step for the actual design...

...Redesign! The analysed preliminary solution is not satisfactory.

- Reduce uncertainties
- Find a more relevant strength specification
- Measure in service for calibration of the hydrodynamic model
- Refine the finite element analysis
- Specify severities of a limited number of sites

Flexible tool that can be used from the initial design phase with limited access to data to full system analysis

Framework is generic, **simple** and applicable regardless of design and product

It identifies the critical points and the weakest links

Reliability in a sea of risk

Thank you!

Please find our contact details on the last page of your handout slides.

